ARTICLE

Substantiating freedom from parasitic infection by combining transmission model predictions with disease surveys

Edwin Michael¹, Morgan E. Smith¹, Moses N. Katabarwa², Edson Byamukama³, Emily Griswold², Peace Habomugisha³, Thomson Lakwo⁴, Edridah Tukahebwa⁴, Emmanuel S. Miri⁵, Abel Eigege⁵, Evelyn Ngige⁶, Thomas R. Unnasch⁷ & Frank O. Richards²

A

F%. 1 Model fits and estimated transmission breakpoints. The model fits (grey curves) to baseline microfilariae prevalence from two onchocerciasis endemic sites, **a** Buriri, Uganda and **b** Masaloa, Uganda, and one LF endemic site **c** Gbuwhen, Nigeria, are shown. For Buriri and Masaloa, age-stratified Mf prevalence patterns (shown in the figure as red squares for estimated plateau-type patterns with error bars representing the 95% binomial confidence intervals) used for fitting were constructed according to the reported community-level Mf prevalence (Tables 1, 2). For Gbuwhen, the model was fit to post-

intervention data (sho

R٦ Ŕ fi. (1,40 8 ٦. 8 8 ν inte 18K0 & fi 1. ; .1. 100 . 1. .1& .. in the

Ti& 2 v . **1**87. 1 ... 1 100,00, fi. .¦& æ. 'R 1 V. 11. 87. .¦& .1&. .. 1**8**7 v 87 ;fi v v .1 .¦&r Vill fi... 14 , j&. .. inter a (

N,%∿,146, _a,	V,%a , *	Y₄a	Та _{, г} , а,%, ^а	N ⊸ a , ⊶d	N ; ₇ = ,44%×	М, лалсл (%)	M b⊸aaR % (d⊥ %,, , , a , c., 95% EP ^d , ⊥, d'a ÅBR)
Nasarwa	Gbuwhen ^b						

, , , ,

 $\begin{array}{c} \mathbf{F}_{\mathbf{x}} \\ \mathbf{F}_{\mathbf{$

 $\frac{1}{10} \sum_{i=1}^{N} \frac{1}{10} \sum_{i=1}^{N} \frac{1}{10$

 $\begin{cases} 1 & i \neq 2 \\ i \neq 2 \\ i \neq 3 \\ i \neq 4 \\ i \neq 4$

 $\left\{ \begin{array}{c} \mathbf{x}_{1} \\ \mathbf{y}_{2} \\ \mathbf{y}_{1} \\ \mathbf{y}_{2} \\ \mathbf{y}_{1} \\ \mathbf{y}_{2} \\ \mathbf{y}_{1} \\ \mathbf{y}_{2} \\ \mathbf{y}_{1} \\ \mathbf{y}_{2} \\ \mathbf{y}_{2} \\ \mathbf{y}_{1} \\ \mathbf{y}_{2} \\$

F%. 4 Sequential entomological sampling for classification. **a** Stop lines corresponding to a Wald's sequence probability ratio test (SPRT)⁷¹ sampling plan for classification based on entomological infection thresholds, as measured by simple random sampling of vectors. Results for a scenario with $p_0 = 0.00005$ (= 95% EPT L3 prevalence threshold) and p_1

 $i = 1, \dots, n =$

 $\frac{1}{1} = \frac{1}{1} = \frac{1}$

 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1$

M 🔬 d

 $\begin{array}{c} \mathbf{M}_{\lambda} \quad \mathbf{d} \\ \mathbf{Cac} \ \mathbf{a} \ \mathbf{\chi}_{0} \quad \mathbf{\chi}_{0} \quad \mathbf{x} \mathbf{c} \ \mathbf{\chi}_{0} \\ \mathbf{a} \ \mathbf{c} \ \mathbf{a} \ \mathbf{c} \ \mathbf{a} \ \mathbf{\chi}_{0} \quad \mathbf{g} \\ \mathbf{a} \ \mathbf{c} \ \mathbf{a} \ \mathbf{c} \ \mathbf{a} \ \mathbf{\chi}_{0} \quad \mathbf{g} \\ \mathbf{a} \ \mathbf{c} \ \mathbf{a} \ \mathbf{c} \ \mathbf{a} \ \mathbf{c} \ \mathbf{a} \ \mathbf{a} \ \mathbf{c} \ \mathbf{c}$

$$\begin{split} &\frac{\partial P}{\partial t} + \frac{\partial P}{\partial a} = \Phi L^* F_1(I(a,t)) F_2(W_{f}(a,t)) \\ &- \mu_w P(a,t) - \Phi L^* F_1(I(a,t-\tau)) F_2(W_{f'}(a,t-\tau)) \zeta \\ &\frac{\partial W}{\partial t} + \frac{\partial W}{\partial a} = \Phi L^* F_1(I(a,t-\tau)) F_2(W_{f'}(a,t-\tau)) \zeta - \mu_w W(a,t) \\ &\frac{\partial M}{\partial t} + \frac{\partial M}{\partial a} = F_3(W_{f'}(a,t)) - M(a,t) \\ &\frac{\partial I}{\partial t} + \frac{\partial I}{\partial a} = W_{f'}(a,t) - I(a,t) \\ &L^* = F_4(W_{f'}(a,t)) \end{split}$$

43. •..•• , •... (..., •..., •..., •..., •... , •.