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Results
Model fits and breakpoints. Figure 1 provides an illustration of
the ability of our data-driven modelling approach to both identify
best-fitting onchocerciasis and LF models for describing observed
disease-specific Mf prevalence data in different community set-
tings, and to facilitate the estimation of the corresponding Mf
transmission thresholds for use as design prevalences (see
Methods). Results are shown for two of the onchocerciasis and
one of the LF study sites in the figure, with the full set of model
fits and the applicable 95% Mf elimination probability thresholds
(EPTs)—the Mf prevalence values, which when crossed below
would signify a 95% probability that transmission interruption is
likely to occur6,25—in all the other study sites given in Supple-
mentary Fig. 1 and Supplementary Fig. 2. As described in detail in
Singh and Michael6, and Michael and Singh25, these EPTs were
derived using an inverse empirical cumulative density function
(ECDF) approach and are calculated at either the annual biting
rate (ABR) or the threshold biting rate (TBR), depending on
whether a particular location has implemented vector control
measures in addition to mass drug administration (MDA).
Empirical evidence for the existence of these model-derived
thresholds, including validation that crossing below such
thresholds would lead to non-detectable filarial transmission, is
detailed in Reimer et al.28 and indicate that the breakpoints
predicted in this study are not merely theoretical outputs arising

from analyses of our data-fitted models but are very likely to
reflect actually occurring natural phenomena in the field.

The numerical values of the Mf 95% EPTs for each of the
onchocerciasis and LF study sites are further listed in Tables 1, 2
respectively. It is noteworthy that for the onchocerciasis sites,
these breakpoint estimates were derived via analyses of the
onchocerciasis models that were found to best fit the joint
baseline Mf prevalence and ABR data measured directly in each
site. Mf breakpoint values are shown at the TBRs for Mt. Elgon
villages and at the prevailing ABR intensity for all sites belonging
to the Madi Mid North focus in Uganda. As pointed out by Singh
and Michael6, Mf breakpoints at TBR are applicable when vector
control is added to MDA and so constitute the relevant target
breakpoints in the case of Mt. Elgon, whereas in the case of
MDA-only interventions as carried out in the Madi Mid North
focus, the corresponding breakpoints of interest are those that are
applicable at the prevailing and undisturbed ABR rates. In the
case of some of the LF study sites, however, the site-specific
breakpoint values were estimated by carrying out analyses based
on age-prevalence and ABR values hindcasted to pre-control
baseline states using the models that best fitted the available post-
intervention prevalence data in each site
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Fig. 1 Model fits and estimated transmission breakpoints. The model fits (grey curves) to baseline microfilariae prevalence from two onchocerciasis
endemic sites, a Buriri, Uganda and b Masaloa, Uganda, and one LF endemic site c Gbuwhen, Nigeria, are shown. For Buriri and Masaloa, age-stratified Mf
prevalence patterns (shown in the figure as red squares for estimated plateau-type patterns with error bars representing the 95% binomial confidence
intervals) used for fitting were constructed according to the reported community-level Mf prevalence (Tables 1, 2). For Gbuwhen, the model was fit to post-

interventiondata(shownintheinsetplotasredsquareswitherrorbarsrepresentingthe95%binomialcon fi
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several of these sites had also previously received annual MDA
with Ivermectin only under the Nigerian Onchocerciasis
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Table 2 LF survey data for Nigerian villages and corresponding model-predicted Mf prevalence thresholds at ABR

Nigerian
state

Village Year Total populationa No. sampled No. positive Mf prevalence
(%)

Mf breakpoint (design prevalence,
95% EP threshold at ABR)

Nasarwa Gbuwhenb
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performing parasite infection freedom assessments, because
inadequate sample sizes would indicate ongoing transmission, as
was deemed for Madi Mid North, when in reality a high prob-
ability may have been reached indicating that transmission has
ceased.

An important caveat to note is that these results are highly
sensitive to the specificity of the diagnostic tests used. If the
specificity of a test tends to 1 then the power of declaring a
population infection-free will decline dramatically for a given
sample size (Fig. 3), essentially because of significant reductions
in the observation of false-positive diagnostic test results. Only by
increasing sample sizes at high test specificities for a given
combination of test sensitivity and design prevalence values will
high survey confidences (e,g., > 95%) be achieved for declaring
infection freedom in such a case (Fig. 3). This result underscores
the paramount importance of using appropriate test performance
values and sample size calculations when carrying out PFFI
predictions. Note, because there is a lack of clear consensus on the
sensitivity and specificity of the diagnostic tools used in these
surveys (thick blood smear for LF and skin snip microscopy for
onchocerciasis)30–36, we used a neutral set of test performance
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mouth disease, point to the potential power of applying these
non-zero prevalence thresholds for guiding the making of
defensible evidence-based intervention stopping decisions in
disease control programmes.

The PFFI approach developed and used in this study also
differs conceptually and methodologically from existing WHO
infection freedom assessment frameworks. First, it explicitly
addresses the problem related to the use of arbitrarily defined
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infection thresholds for assessing the achievement of parasite
transmission interruption by existing methods21,39–41. We have
shown using modelling studies, how, in this regard, if arbitrarily
set infection thresholds are used as elimination targets for a
disease, such as LF, then if the actual breakpoint thresholds are
not crossed, such an approach will invariably result in a high
likelihood that resurgence of infection will occur6. Empirical
results have begun to support these theoretical findings; for
example, a recently reported community trial of MDA versus
combined MDA and vector control interventions against LF in
India has provided the first field evidence for this potential for
resurgence of infection if MDA is stopped before these natural
breakpoints are crossed7. A similar explanation may also underlie
the findings from a recently concluded post-intervention assess-
ment carried out across Sri Lanka, which showed the persistence
of LF transmission in many communities that had both under-
gone MDA interventions and met the standard WHO LF end-
point criteria40. These results reinforce a key conclusion from
both our original modelling and present works, viz. if reliable
declarations of transmission interruption are to be made in
parasite elimination programmes, there is a vital need to apply
ecologically sound breakpoint values rather than use untested,
arbitrarily defined target thresholds for making such decisions6,25.

Second, current WHO disease freedom assessment tools are
largely developed and applied with little consideration paid to the
impacts that sample sizes and diagnostic tool statistics can have in
the evaluation of infection endpoints in a population21,39–41. Our

analysis has highlighted the vital role that the performance of
diagnostic tools can play not only for reliably clarifying infection
levels that can be expected to occur in a population, but also for
calculating the sample sizes required for carrying out dependable
freedom from infection assessments. This is a well-established
consequence of using structured surveys for detecting
infection8,9,11,18,19,23,42–44, and yet these features have curiously
been little used in current WHO-led transmission interruption
assessment survey designs21,41. This lacuna also includes the
current incomplete information on the sensitivity and specificity
of the various diagnostic tools used or proposed for measuring
filarial infections45. These deficiencies mean that confidence in
any predictions that parasite transmission interruption has
occurred made by such frameworks is unlikely to be high. This
supports the overriding need for not only resolving these infec-
tion measurement issues but also for evaluating the use of new
predictive frameworks, such as the present PFFI tool, which can
facilitate more informed decision-making via combining the
effects of parasite extinction dynamics with diagnostic tool sta-
tistics effectively.

The application of our approach to programmatic disease-
surveillance data tracking changes in human infection pre-
valences resulting from interventions against the two diseases
investigated in this study (viz. onchocerciasis in Uganda and LF
in Nigeria) has provided a first demonstration of how a model-
based surveillance tool may be used to reliably establish as well as
validate any reported infection-free status of a community. The
results have highlighted two major benefits in this regard. First, if
positive, albeit low-valued, infection breakpoints occur for a
parasitic system, then they show that it is not necessary to wait
until zero infection levels are reached before infection freedom
evaluations can be attempted. This is a departure from previous
applications of the disease freedom algorithms for making such
assessments in the livestock and pest management settings8,9,23,
where zero infection sequence data are often used in making such
calculations. The second bene
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The present data analysis has also allowed appraisal of the next
stage of critical work that must be resolved if the developed tool is
to be deployed effectively in the field. First, with respect to our
PFFI tool, we indicate that a major need is to validate whether
estimating high infection freedom probabilities using human
infection surveillance data and model-estimated design pre-
valences do indeed signify that parasite transmission has
been broken in a site (e.g., > 95% confidence of freedom level
(Tables 3, 4)). We have previously shown from analyses carried
out in Papua New Guinea that one sensitive test to validate
predictions of transmission interruption based on human infec-
tion thresholds is to assess whether crossing below these
thresholds will lead to the absence of infection in vector popu-
lations28. However, one difficulty with assessing the crossing of
the corresponding very low larval infection breakpoint prevalence
values6,47 or zero infection in vector populations is the require-
ment of significantly large sample sizes to carry out this exer-
cise48–50. We suggest that the application of the sequential
sampling approach for classifying whether an observed arthropod
infection incidence is significantly below or above a critical
intensity or threshold, however, may show particular promise for
effectively resolving this practical problem in the field49–52. In
sequential sampling, sampling efforts are carried out in sequence
until a predefined critical threshold of pests or infected vector
numbers, p, are either reached (so triggering implementation of
control) or is detected to be below p (so enabling stopping of
control). Figure 4 illustrates this method for a scenario for which
the infective L3 larval threshold prevalence in a setting is 0.005%.
The graph to the right of the panel indicates that to detect this
threshold an average sample of at least approximately 350 mos-
quitoes would be needed. It is noteworthy that the equivalent
sample size using the fixed n sampling approach (for the binomial
distribution) for the same purpose would require up to 1200
mosquitoes per sampling bout50,53. The figure on the left shows
that if 400 mosquitoes were sampled, say, but one infected

mosquito was found in a first bout, sampling should be con-
tinued, i.e., another bout of sampling should be conducted.
However, suppose that in the second bout, zero infected mos-
quitoes are found, then the cumulative number of infected
mosquitoes would still remain at 1. Now, reading along the y
(cumulative positive cases) and x axes (observe that the cumu-
lative sample size along the x axis is now 800) of the graph, we
can use the stop lines (the lower of which represents the 0.005%
threshold and the upper a 0.01% threshold49,54 to determine at
95% confidence if the cumulative number of infected mosquitoes
from a sequence of two bouts lies below the lower stop line or not.
If it lies below the stop line, then sampling can cease and one can
confidently predict (here at the 95% confidence level) that
transmission has been broken (in the sense that infection in the
sample of 800 mosquitoes from consecutive sampling is below
the L3 prevalence threshold of 0.005%). These results show that
coupling a sequential vector sampling framework to PFFI
assessments based on human infection data in a setting could
allow validation of the PFFI predictions of transmission inter-
ruption in a given site, including determining whether once
infection thresholds are crossed, parasitic infection will decline to
zero. Such an analysis will also permit evaluations of which
indicator of infection might be most sensitive for supporting
estimations of infection freedom. Empirical studies are now
required for conducting these studies especially given that we are
rapidly nearing the 2020 deadline set by the WHO 2012 Roadmap
on NTDs for achieving the global elimination of these diseases55.

A second future need is the extension of our method to account
for serial surveillance data in order to develop plans for assessing
cumulative evidence for infection freedom. Currently, we have
considered each data point to be temporally independent, a
simplification which is clearly less than optimal when dealing
with the analysis of longitudinal surveillance data. Such plans
must also consider the fact that populations are not closed and
the effect that importation of infection will have on freedom

0 500 1000

Sampling units (n ) Infection prevalence (p )

1500 0.00 0.01 0.02 0.03

7a b

6

Risk of recrudescence

Extinction

Continue sampling

5

C
um

ul
at

iv
e 

ca
se

s

4

3

2

1

0

350

300

A
ve

ra
ge

 s
am

pl
e 

si
ze 250

200

150

100

50

Fig. 4 Sequential entomological sampling for classification. a Stop lines corresponding to a Wald’s sequence probability ratio test (SPRT)71 sampling plan
for classification based on entomological infection thresholds, as measured by simple random sampling of vectors. Results for a scenario with p0 =
0.00005 ( = 95% EPT L3 prevalence threshold) and p1
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probabilities. We are investigating the application of Bayesian
logic involving the specification of a prior probability and infec-
tion importation probability at each time step of calculation, as
developed for the case of negative surveys56,57, as a means to
address the problem in the next stage of our work.

A third important need concerns how we might apply our
prediction framework to support the effective making of area-
wide freedom declarations. Although two-stage sampling strate-
gies could be used to account for village-level clustering of
infections, a more natural way forward, might be to couple maps
of infection with the PFFI utility to carry out area-wide proof of
freedom calculations based on the relative spatial distribution of
infection risk over an area of interest29,56. Such a spatially explicit
tool could also be used to determine the optimal spatial config-
uration of surveys and forecast the effort and costs necessary to
declare success.

Although a generalized filarial transmission model was exten-
ded to simulate the specifics of LF and onchocerciasis transmis-
sion in this study based on previously established population
models6,15,24–26,58–60 (see Methods), it is important to note that,
as for any model, new knowledge that would lead to refinements
of the transmission processes incorporated in current models
would result in changes to the breakpoint values used as design
prevalences in the present PFFI tool. In particular, we highlight
the important need to obtain better information on the various
positive density-dependent factors that govern breakpoint
thresholds in filarial infection, eg. functional form and operation
of host immunosuppressive responses, co-variation in Mf dis-
tributions between host and vector populations, and worm death
rate functions (see Methods)15,61,62, if better numerical values of
worm breakpoints are to be derived. These refinements would
impact the infection freedom probabilities calculated here to a
larger or smaller degree, further stressing the important need for
continual efforts to update complex models and validate their
predictions as new information regarding these processes arrive.

On a final note, we highlight that although our modelling
approach was developed for supporting decision-making for the
two diseases studied here, the developed framework is flexible and
can be easily made specific for other parasitic diseases and
management goals. This will be the case whether or not mathe-
matical models that allow estimation of breakpoint transmission
thresholds exist for these diseases, as in the absence of such
predictions traditional FFI calculations based on zero survey data
could still be used38. We are currently evaluating such enhance-
ments, particularly with regard to the spatio-temporal and eco-
nomic extensions required for (1) facilitating effective area-wide
disease freedom assessments and (2) optimizing economically
sound infection thresholds applicable to different settings, in our
laboratory.

Methods
Calculating infection freedom probability using models. Proving that a popu-
lation is free from a disease or infection is difficult, if not impossible, due to the
practical challenges of testing every individual and the limitations of diagnostic
tools. The use of structured surveys and analyses to demonstrate freedom from
infection must therefore rely on demonstrating a high probability that a population
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human and vector hosts to carry out the LF and onchocerciasis modelling work.
We have previously described this model in detail for describing the transmission
and elimination of LF6,15,25,63 and we present the structurally similar oncho-
cerciasis model here for the first time. Briefly, this model simulates the population
level dynamics of various life stages of a filarial parasite in both human and vector
hosts via the use of coupled partial differential and ordinary differential equations
for describing changes in the pre-patent worm burden per human host ðPða; tÞÞ;
adult worm burden per human host ðWða; tÞÞ; the Mf level in the human host
ðMða; tÞÞ; the average number of infective L3 larval stages per vector (L), and a
measure of immunity ðIða; tÞÞ developed by human hosts against L3 larvae. The
state equations describing the model are as follows

∂P
∂t

þ ∂P
∂a

¼ ΦL�F1 I a; tð Þð ÞF2 WT a; tð Þð Þ
� μwP a; tð Þ �ΦL�F1 I a; t � τð Þð ÞF2 WT a; t � τð Þð Þζ
∂W
∂t

þ ∂W
∂a

¼ ΦL�F1 I a; t � τð Þð ÞF2 WT a; t � τð Þð Þζ � μwW a; tð Þ
∂M
∂t

þ ∂M
∂a

¼ F3 WT a; tð Þð Þ � γM a; tð Þ
∂I
∂t

þ ∂I
∂a

¼ WT a; tð Þ � δI a; tð Þ
L� ¼ F4 WT a; tð Þð Þ

ð5Þ

The state variables and parameters of this model for both LF and onchocerciasis
are provided in Supplementary Tables 2 and 3. Here we note that the term, Fx,
denotes the density-dependent functional forms that govern the transitions or
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